WARTUNGSHANDBUCH

für den Motorsegler

SF 25 C - FALKE

mit Motor \(\Box \) ROTAX 912 A (2)
oder \(\square \) ROTAX 912 S ()

max. Abflugmasse 580-kg, 610-kg, 650 kg oder 690-kg

Ausgabe: März 1997

Es gehört zum Motorsegler SF 25 C - Falke

Werk-Nr.: 4/16 5°2.5°
Kennzeichen: D-KFGL
Halter: Flugschule Michael Bergmann

Änderung 7 vom 20.01.2009

Dieses Handbuch ist stets an Bord des Motorseglers mitzuführen.
Inhaltsverzeichnis

WARTUNGSANDBUCH

Inhaltsverzeichnis .. 1
1. Auf- und Abrüsten ... 2
 1.1 Aufrüsten .. 3
 1.2 Abrüsten .. 3
 1.3 Transport des Motorseglers .. 4
 1.4 Aufbocken des Motorseglers 4
Tragflügel mit Beiklappmechanik .. 5
 1.5 Beiklappen - Allgemeines ... 6
 1.6 Beiklappen der Tragflügel ... 6
 1.7 Aufklappen der Tragflügel .. 7
 1.8 Wartung der Beiklappmechanik 8
 1.9 Ab- und Aufrüsten mit Beiklappmechanik 8
 1.10 Klappbare Außenflügel .. 9
 1.10.1 Flügelmontage .. 9
 1.10.2 Klappen der Außenflügel 9
2. Auffüllen von Betriebsmitteln .. 10
 2.1 Auffüllen von Kraftstoff .. 10
 2.2 Auffüllen von Öl .. 10
 2.3 Kontrolle der Kühlflüssigkeit 10
 2.4 Einbauübersicht Motorraum (Ansicht von oben) 11
3. Wartung, Kontrollen, Reparaturen 12
 3.1 Pflege ... 12
 3.2 Termingemäße Wartung, Kontrollen 12
 3.2.1 Flugklarkontrolle ... 12
 3.2.2 Stunden-Kontrollen Motor und Propeller 12
 3.2.3 Stunden-Kontrollen Flugwerk 13
 3.3 Wartung der Batterie ... 13
 3.4 Fahrwerk und Bremse .. 14
 3.4.1 Einteilige Klapphaube 15
 3.5 Propellerwechsel .. 16
 3.6 Jahresnachprüfung ... 16
 3.7 Nicht termingebundene Kontrollen, Reparaturen 17
4. Ausrüstung .. 17
5. Schaltplan .. 18
 Schaltplaneinzelteile .. 19
6. Einstelldaten, Ruderausschläge, Seilspannungen 20
 6.1 Seilspannungen: .. 21
 6.2 Betriebshandbücher ... 21
7. Angaben zur Schwerpunktsbestimmung für Zentralrad- und Zweibeinfahrrwerk 22
 Angaben zur Schwerpunktsbestimmung für Zentralrad- und Zweibeinfahrrwerk 22
8. Angaben zur Schwerpunktsbestimmung für Bugradfahrrwerk 23
9. Übersicht der erfolgten Wägungen 24
10. Übersicht der erfolgten Wägungen 25
X Hinweise für das Herstellen bzw. Löszen der Flügelhauptverbindung X 26
Anhang 1 zu Kapitel 3.4.1 (Nur eingearbeitet, wenn Änderung 174 eingerüstet ist) 27
Anhang 2 zu Kapitel 3.4.1 (Nur eingearbeitet, wenn Änderung 174 eingerüstet ist) 28

Ausgabe März 1997 Änd.7, 20.01.2009
1. Auf- und Abrüsten

Wird der Falke öfters auf- und abgerüstet, so lohnt sich die Beschaffung der Stützräder für den Rumpf. Mit diesen kann der Rumpf leicht bewegt werden. Die Anschlüsse für die Rumpf-Stützräder sind an jedem Rumpf vorgesehen. Für das Abstellen des Rumpfes sind auch Stützen ohne Räder lieferbar. (Entfällt bei Ausführung mit Zweirad-Hauptfahrwerk oder Bugradfahrwerk).

1.1 Aufrüsten

Vor dem Zusammenbau werden, besonders nach einem Straßentransport mit offenem Hänger, sämtliche Anschlußbeschlagsteile gereinigt und gefettet:

1) Vordere Flügel/Rumpf-Aufhängung reinigen und fetten (2 Stellen)
2) Hintere Flügel/Rumpf-Aufhängung reinigen und fetten (2 Stellen)
3) Hauptbolzen reinigen und fetten
4) Höhenleitwerkserhängung reinigen und fetten (3 Stellen)
5) Flügelklappstellenbolzen reinigen und fetten (3 Bolzen je Tragflügel) (falls vorhanden)
6) Querruderantrieb an der Flügelklappstelle äußerlich reinigen und fetten (falls vorhanden).

Mit der Anbringung des rechten Flügels verfährt man genauso wie beim linken. Dabei ist ganz besonders darauf zu achten, daß der Rumpf senkrecht steht und nicht verkantet wird (nur bei Zentralradfahrwerk).

Jetzt werden im Rumpfinneren die Querruder an den beiden Trennschellen angeschlossen und gesichert und die beiden Seilzüge für die Störklappen mit den dafür vorgesehenen Karabinerhaken verbunden.

Ausgabe März 1997
Die an der Flossensunterseite hervorstehenden Beschlaglaschen (Ruder in gezogener Lage) werden auf die zwei rumpffesten Bolzen aufgeschoben. Dann wird der vordere Höhenflossenbeschlag durch eine Kronenmutter M10 oder Innensechkantschraube M10 mit dem Rumpf verschraubt; die Sicherung erfolgt mit einer Fokkerwelle. Die Leitwerkverkleidung (falls vorhanden) wird unter die Seitenflüsse eingehakt und mit zwei Patentriegeln befestigt.

Der Höhenruderantriebshebel ist mit der Stoßstange durch Einschieben des dafür vorgesehenen Bolzens zu verbinden und zu sichern. Zum Schluss ist der Bowdenzug an den Beschlägen des Höhenruders und der Trimmklappe einzuhängen ("Trimmhebel im Rumpf dabei in Stellung "voll kopflastig").

Bei elektrischem Trimmruderantrieb ist die Steckerverbindung im Bereich des Handlochdeckels aufzustecken und fest zu ziehen.

Nach dem Aufrüsten sind die Arbeiten der täglichen Flugklarkontrolle, siehe Flughandbuch Seite 14, durchzuführen.

1.2 Abrüsten

Als erstes wird die Parkbremse gesetzt. Das Abrüsten des Motorseglers erfolgt in der umgekehrten Reihenfolge wie das Aufrüsten.

Am besten beginnt man beim Höhenleitwerk. Beim Abbau der Tragflügel ist darauf zu achten, daß die Querruder und die Störklappen an den Trennstellen im Rumpf gelöst und die zwei seitlichen Bleche am Rumpf unter den Flügelholmen entfernt sind, ebenso sind die Stecker für Positionsleuchten und VOR-Antenne zu lösen (so vorhanden). Der Hauptbolzen ist am leichtesten herauszuziehen, wenn die beiden Helfer an den Flügel spitzen den Tragflügel soweit entlasten, daß der Hauptbeschlag spannungsfrei ist. Mit der Tragflügel spitze muß man dann soweit rückwärts gehen, bis der vordere Flügelanschlußbolzen vollständig aus dem flügelseitigen Beschlag frei ist; dann wird der Flügel nach vorne geschoben, um vom hinteren Aufhängebeschlag freizukommen. Rumpf und Flügel nicht verkanten und mit der Flügel spitze nicht zu weit nach rückwärts gehen!

1.3 Transport des Motorseglers

Die Kabinenhaube ist zu verriegeln und zusätzlich (am besten mit den Anschallgurten) zu halten. Das Seitenruder ist festzulegen, ebenso die Querruder.

Beim Transport im Regen ist, sofern keine wasserdichten Planen vorhanden sind, besonders darauf zu achten, daß nirgends Wasser eindringen kann (Klappenspalte, Öffnungen für Stoßstangen, Rumpfoffnungen und dergl.). Sind die Flügel und das Höhenleitwerk beim Transport im Regen naß geworden, dann sofort im warmen Raum austrocknen, dazu mit Randleiste nach unten aufstellen!

Beim Transport des montierten Motorseglers im Fluggelände ist darauf zu achten, daß besonders im unbebauten Gelände der Knüppel mit den Anschallgurten festgebunden wird, um ein Schlagen des Höhenruders zu vermeiden.
1.4 Aufbcken des Motorseglers

a) **Bei der Ausführung mit Zweibein-Hauptfahrwerk**

Der Falke kann direkt unter den Einschubtaschen der GFK-Federbeine oder an den am Rumpfvorderteil seitlich angebrachten Gewindevölkern aufgebockt werden (zu diesem Zweck Gewindebolzen M10 einschrauben). Auf keinen Fall ist der Falke an den formgegebenen Rohren im Bereich des Fahrwerkes aufzubocken. Dies gilt auch für die Bugradausführung.

b) **Bei der Ausführung mit Einrad-Hauptfahrwerk**

Der Falke kann an den dafür vorgesehenen Rohrstummeln (mit einem Dreieck gekennzeichnet), bei der älteren Ausführung an den Einstiegbügeln, oder an den am Rumpfvorderteil seitlich angebrachten Gewindevölkern aufgebockt werden (zu diesem Zweck Gewindebolzen M 10 einschrauben). Auf keinen Fall ist der Falke an den formgegebenen Rohren im Bereich des Fahrwerkes aufzubocken.

c) **Aufbcken am Sporn**

Das Aufbcken am Leitwerksträger geschieht auf der dafür vorgesehenen Lasche an der Rumpfunterseite oder auf dem Dreiecksverband (Seilabweiser) vor dem Spornrad. Die vor der Lasche verlaufende Holzformleiste ist nicht zum Aufbcken geeignet.

Wird der Motorsegler demontiert abgestellt, so ist zu beachten, dass die Tragflügel im richtigen Abstand unterbockt werden. Das ist bei der Ausführung mit Klappflügeln besonders wichtig.

Eine Auflage kommt in jedem Fall im Bereich der Flügelwurzel, die zweite in die Gegend von Rippe 19 (das ist ca. 1,10 m hinter dem Querruderbeginn). Bei senkrechter Lagerung der Tragflügel ist dieser Abstand unbedingt einzuhalten, da sonst ein Verwerfen der Endleiste unvermeidlich ist.

Ist der Motorsegler längere Zeit in einem geschlossenen Raum abgestellt, so sorge man für eine ausreichende Belüftung desselben.
Tragflügel mit Beiklappmechanik

1.5 Beiklappen - Allgemeines

1.6 Beiklappen der Tragflügel

Im Einzelnen geht das Beiklappen mit 2 Personen, als I und II bezeichnet, wie folgt vor sich:

1. Anbau des Rumpf-Stützfahrwerkes (nur bei Einrad-Hauptfahrwerk).

2. Einsetzen der Flügelhalterung an der Seitenflosse (Einstecken und auf der Gegenseite mit Fokkernadel sichern).

3. I löst die kleinen Bleche unter den Holmstimmeln, sowie etwaige elektr. Anschlüsse, die Querruder- und Bremsklappen-Anschlüsse im Rumpf und entsichert den Hauptbolzen.

4. II hebt die rechte Flügelspitze hoch (entlasten), I zieht den Hauptbolzen heraus, geht an die rechte Flügelhinterkante am Rumpf und löst den hinteren Flügelanschlußbolzen (entsichern und nach hinten bewegen).

5. II zieht den Flügel auf der Führung bis zum Anschlag heraus. I hält den Flügel an der Hinterkante waagrecht.

6. I dreht den Flügel in die Senkrechte (Flügelhinterkante anheben) und geht um den Flügel herum zum Cockpit. II schwenkt die Flügelspitze zum Leitwerk, I achtet dabei darauf, daß die Flügelwurzel am Rumpf frei geht.

Ausgabe März 1997
7. Il schiebt den Flügel auf der Führung nach vorne bis zum Anschlag, Il paßt dabei auf, daß die Wurzel nicht an den Rumpf kommt, Il hängt den Flügel mit dem Haken in die Öse an der Seitenflosse, Il hängt den Flügel mit dem Kabel an den Rumpf fest. (Der Falke bleibt mit nur einem beigeklapperten Flügel stehen und kippt nicht).

8. In der gleichen Weise wird nun der linke Flügel beigeklappt, wobei der Flügel durch eine Hilfstrebe im Rumpf zunächst horizontal gehalten wird und durch Anheben der Flügelspitze unter dieser Strebe herausgezogen wird. Der Motorsegler ist nun fertig zum stellen in der Halle. (Wenn sehr wenig Platz vorhanden ist, kann evtl. das Höhenleitwerk noch abgenommen werden).

1.7 Aufklappen der Trägflügel

Das Wiederaufklappen der Flügel - der umgekehrte Vorgang:

1. Il steht an der linken Flügelwurzel, hängt das Kabel am Rumpf aus und hält den Flügel senkrecht. Il geht an die linke Flügelspitze, hängt den Flügel aus der Öse am Leitwerk aus und zieht den Flügel bis zum Anschlag rückwärts. Dann schwenkt Il den Flügel vor, Il geht hinter den Flügel an die Wurzel und dreht den Flügel horizontal.

4. Il sichert nun den Hauptbolzen, schließt Querruder- und Bremsklappen an, verbindet eventige elektrische Anschlüsse und bringt die kleinen Bleche unter den Holmstummeln an. Il löst die Halterung für die Flügel aus der Seitenflosse.

6. Evtl. eingestecktes Schwenkrad am Sporn entfernen.
7. Kontrolle nach dem Aufklappen der Tragflügel:
 Sitz und Sicherung des Hauptbolzens.
 Sitz und Sicherung der hinteren Flügel/Rumpf-Anschlüsse.
 Querruder angeschlossen und gesichert.
 Störklappen angeschlossen.
 Etwaige elektrische Verbindungen hergestellt.
 Haltestrebe aus der Seitenflosse entfernt.
 Hilfsfahrwerk entfernt (nur bei Ausführung mit Einrad-Hauptfahrwerk)
 Einsteckschwenkrad am Sporn entfernt (falls vorhanden)
 Funktionsprobe Querruder, Störklappen sowie der elektrisch
 angeschlossenen Teile

1.8 Wartung der Beiklappmechanik
Da im beigeklappten Zustand ein Teil der Beiklappmechanik frei liegt, sollte
der Motorsegler im beigeklappten Zustand nicht im Freien abgestellt werden.
Vom öffentlichen Schmieren und gewaltlosen Betätigen hängt im wesentlichen die
Lebensdauer der Beiklappmechanik ab. Daher ist die Beiklappmechanik alle
20 Betätigungen, mindestens jedoch monatlich (während der Flugsaison),
sowie zu Beginn und Ende der Flugsaison zu schmieren.
Das Schmieren erfolgt im beigeklappten Zustand an folgenden Stellen:

1. vordere und hintere Flügel/Rumpfaufhängungen flächenseitig schmieren
 (4 Stellen)

2. vordere und hintere Flügel/Rumpfaufhängung rumpfseitig schmieren
 (4 Stellen)

3. Flügelhauptverbindung mit Hauptbolzen schmieren

4.2 Führungsstangen am Rumpf schmieren

5. Führungsstangen an den Flügeln schmieren (je 1)

6.2 Kreuzgelenke an den Führungsstangen ölen.

1.9 Ab- und Aufrüsten mit Beiklappmechanik
Für das Abrüsten des „Falke“ mit Beiklappmechanik sind die Kreuzgelenke
flügelseitig zu lösen (je 1 Stoppmutter entfernen). Die Tragflügel können dann
auf der Führungsstange ganz herausgezogen und vom Kreuzgelenk
angehoben werden. Für das Aufrüsten sind die Tragflügel wieder auf die
Kreuzgelenke zu setzen. Dabei auf die richtige Lage der Kreuzgelenke zu
achten (farbliche Kennzeichnung zur Deckung bringen). Kreuzgelenke mit
neuen 2 Stoppmutter M 8 befestigen. Danach können die Tragflügel in den
Rumpf eingeführt bzw. beigeklappt werden (siehe Abschnitte Beiklappen bzw.
Aufklappen). Sind die Teile der Beiklappmechanik abmontiert, so kann der
Falke wie im Abschnitt 1 beschrieben, auf- und abgerüstet werden.

Ausgabe März 1997
1.10 **Klappbare Außenflügel**

Für eine bessere Unterstellmöglichkeit in Flugzeughallen wird der Falke auf Wunsch mit Klappflügeln versehen. Die Spannweite verringert sich bei eingeklappten Außenflügeln von 15,3 auf ca. 10 Meter.

1.10.1 **Flügelmontage**

1.10.2 **Klappen der Außenflügel**

Das Klappen der Außenflügel geschieht um den oberen Bolzen (Mittellinie des oberen Bolzens ist Drehpunkt des Außenflügels). Das Klappen der Außenflügel hat an windgeschützter Stelle (z.B. im Schutz der Flugzeughalle) zu erfolgen. Die Flügelstüträder sind zum leichteren Klappen an den Innenflügeln zu montieren.

Der Steuerknüppel und damit die Querruder müssen ungefähr in Neutralstellung stehen!

Das Einklappen der Außenflügel erfolgt in der gleichen Weise, nur in der umgekehrten Reihenfolge wie das Aufklappen der Außenflügel. Zur Betätigung des Bolzentrennantriebes ist dabei der Sicherungsstift kurzzeitig anzuheben.

Ausgabe März 1997
2. Auffüllen von Betriebsmitteln

2.1 Auffüllen von Kraftstoff
Als Kraftstoff wird bleifrei NORMALbenzin mit min. ROZ 90 für ROTAX 912 A bzw. bleifrei SUPERbenzin mit min. ROZ 95 für ROTAX 912 S oder Flugbenzin AVGAS 100 LL verwendet. Es können die Kraftstoffsorten nach EN 228 (ab bleifrei Normal für ROTAX 912 A, bzw. ab bleifrei Super für ROTAX 912 S, bleifrei Super- Plus, oder alle verbreiteten Kraftstoffsorten) verwendet werden.

△ Warnung:
Vor dem Betanken an einer Tankstelle, Erdung des Motorseglers sicherstellen
(Erdungskabel an Auspuffstutzen anbringen).
Gleiches gilt beim Tanken aus Blech- oder Kunststoffkanistern
(vor dem Betanken Potentialausgleich zwischen Kanister und Motorsegler herstellen).

△ Ohne diese Maßnahme: Brand- und Explosionsgefahr
Das Betanken soll durch einen Ruhlederfilter erfolgen. Auf peinliche Sauberkeit achten! Bei evtl. Regen mit Schirm tanken. Öffnung abdecken!

2.2. Auffüllen von Öl
Der Ölstand ist alle 1 bis 2 Motorbetriebsstunden bzw. vor jedem längeren Flug zu kontrollieren (durch Wartungsklappe auf der rechten Seite der oberen Motorverkleidung), wenn notwendig ist das Öl jeweils bis zum oberen Strich zu ergänzen. Die Ölentlüftstelle ist am Motor gelb gekennzeichnet (dazu obere Motorverkleidung abnehmen). Zu verwendende Öle siehe Flughandbuch Seite 6.
Der Motor ist einige Umdrehungen von Hand am Propeller in Drehrichtung zu drehen, um das Öl vom Motor in den Tank zu pumpen.
Der Vorgang ist beendet, wenn auch Luft in den Öltank zurückströmmt. Dies ist bei geöffnetem Öltankverschluß als Rauschen feststellbar.
Danach ist erst eine korrekte Ölstandskontrolle möglich.

Differenz zwischen max.- und min.- Marke = 0,75 ltr.

2.3 Kontrolle der Kühlflüssigkeit
Der Vorrat an Kühlflüssigkeit ist täglich zu kontrollieren (dies kann durch die Wartungsklappe auf der rechten Seite der oberen Motorverkleidung erfolgen).
Der Flüssigkeitsstand im Überlaufbehälter soll bei kaltem Motor zwischen den beiden Markierungen liegen. Der Deckel am Einfüllstutzen des Ausgleichsbehälters für die Kühlflüssigkeit ist rot gekennzeichnet. Zum Nachfüllen ist die obere Motorverkleidung abzunehmen.
Kühlflüssigkeit 50% Frostschutzkonzentrat mit Antikorrosionszusätzen und 50% Wasser.

Ausgabe März 1997
Änd. 4, 15.01.2003
2.4 Einbauübersicht Motorraum (Ansicht von oben)

- Kühlwasser und Ölkühler unter dem Motor
- Ölvorratsbehälter
- Ölleitung zum Ölkühler
- Kraftstoffleitung zur mech. Pumpe
- Kühlwasser- ausdehnungsgefäß
- Schwimmer- kammer- belüftung
- Ölrücklaufleitung
- Zündelektronik
- Kraftstoff- pumpe
- Luft- filter
- Propellerflansch
- Öfilter
- Propellergetriebe
- Vergaser
- Kühlwassersammler
- Kraftstoffrücklaufleitung
- Ansauggeräusch- dämpfer
3. Wartung, Kontrollen, Reparaturen

3.1 Pflege
Die ständige Reinhaltung und Pflege des Motorseglers, besonders die des Motors und Propellers, ist die erste Voraussetzung für die Betriebssicherheit desselben. Sie ist je nach Benutzung und Witterung in entsprechenden Zeitabständen regelmäßig vorzunehmen.
Ist der Motorsegler längere Zeit in einem Raum abgestellt, so ist für eine ausreichende Belüftung desselben zu sorgen.

3.2 Termingemäße Wartung, Kontrollen

3.2.1 Flugklarkontrolle
Vor dem Flugbetrieb und am Ende jeder Wartungsarbeit ist eine Überprüfung (Flugklarkontrolle) des Motorseglers auf Flugsicherheit einschließlich einer Fremdkörperkontrolle erforderlich. Diese Flugklarkontrolle ist nach dem Flughandbuch S. 14 durchzuführen.

3.2.2 Stunden-Kontrollen Motor und Propeller
(Siehe auch Wartungshandbuch für den Flugmotor ROTAX 912 A() und Betriebs- und Einbauanweisung für Verstellpropeller E-118 bzw. Betriebs- und Einbauanweisung für Festpropeller E-112)
Der Motor ist nach den ersten 25 Betriebsstunden zu kontrollieren und zu warten (siehe Wartungshandbuch ROTAX- Motor Type 912 Serie neueste Ausgabe).
Ausgabe März 1997 Änd. 2, 31.01.1999
3.2.3 Stunden-Kontrollen Flugwerk
Alle 100 Flugstunden, mindestens jedoch einmal im Jahr, sind Wartungsarbeiten am Flugwerk durchzuführen. Diese Arbeiten sind nach der Kontroll- und Wartungsliste durchzuführen, die im Lebenslauf-Akt des Motorseglers vom Hersteller mitgeliefert wird.

3.3 Wartung der Batterie
1. Säurebatterien
 Säuredichte Batterie geladen 1,28 kg/l bei 20°C
 Säuredichte Batterie halb entladen 1,19 - 1,21 kg/l bei 20°C
 Säuredichte Batterie ganz entladen 1,09 - 1,14 kg/l bei 20°C
 Falls erforderlich, Batterie nachladen; Stromstärke für Ladung: 1,5 Ampere.
 Wird die Batterie nicht gebraucht, so ist sie jeden Monat nachzuladen, ferner jeden dritten Monat zu entladen und wieder aufzuladen.

2. Gel-Batterien
 GS 12V/ 22Ah wartungsfreie Hochstrom Batterie
 LxBxH 181x76x167mm, 6,3 kg

 Überwinterung u. längere Stillstandzeit: Batterie braucht nicht ausgebaut zu werden lediglich das Massekabel lösen. Batterie immer nur im vollgeladenen zustand Überwintern, auch bei längerem Stillstand. Ruhespannung ca.12,9 V

 Entladene Batterien müssen sofort wieder aufgeladen werden. Batterie nicht unter 1,75 V pro Celle entladen.

 Trocken-Batterien dürfen nur mit einem Konstantspannungsladegerät geladen werden. Ladespannung pro Celle max. 2,45 V. normal 2,40V=14,4V

 Erhaltungsladung 13,8 V

Ausgabe März 1997
3.4 Fahrwerk und Bremse

a) Bei Ausführung mit Zweibein-Hauptfahrwerk
Der Falke hat ein mit GFK-Blattfedern (wartungsfrei) gefedertes Zweiradhauptfahrwerk mit 5.00 x 5 Bereifung; Reifendruck 2,1 bar.

Zum Lösen der Bremse wird nur der Störfallenhebel angezogen, der Parkbremshebel schwenkt infolge Eigengewicht nach unten und gibt den Störfallenhebel frei (einhändige Bedienung).

Eine weitere Ausführung der Parkbremse ist ein am linken Bremsklappenhebel angebrachter Schwenkgriff, der durch ganz nach oben klappen, BK-Hebel ganz nach hinten ziehen und ganz nach unten klappen des Schwenkgriffes in die Parkbremssposition gebracht wird. Lösen der Parkbremse in umgekehrter Reihenfolge. Durch die Abnutzung der Bremsbeläge muß die Bremse nach Bedarf nachgestellt werden. Dazu sind die Bremsseillägen an den beiden Spannschloßern zwischen Rumpf und den Rädern zu korriganen, so daß sich die Räder bei aufgebocktem Flugzeug mit beiden Händen gerade noch durchdrehen lassen, wenn der linke Störfallenbetätigungshebel bis zum Anschlag vor der Parkbremsstellung gezogen ist Danach sind die Spannschloßer wieder zu sichern (Sicherungsdraht oder Kontermuttern). Diese Einstellung ergibt neben einer beiderseitigen gleichmäßigen Bremswirkung, eine ausreichende Wirkung der Parkbremse. Die Bremsbeläge sind spätestens dann zu erneuern, wenn ein Bremsbelag an einer Stelle auf 1,5 mm Dicke abgeschliffen ist. Soll bei einer Demontage des Fahrwerkes auch das Bremschlüssellager ausgetauscht werden, so ist die Stellung des Bremshebels des Rades für die Wiederaufnahme zu markieren.

b) **Bei Ausführung mit gefedertem Zentralrad-Hauptfahrwerk**

Durch die Abnützung des Bremsbelages der Backenbremse muß die Bremse nach Bedarf nachgestellt werden. Dazu ist das linke Bodenbrett im Cockpit zu entfernen und die Bremsseillänge an der Stellschraube mit Kontermutter zu korrigieren. Die Bremsbeläge sind spätestens dann zu erneuern, wenn ein Bremsbelag an einer Stelle auf 1,5 mm Dicke abgeschliffen ist. Soll bei der Demontage des Fahrwerkes auch das Bremsenschlüssellager auseinandergekommen werden, so ist die Stellung des Bremshebels des Rades für die Wiedermontage zu markieren. Anzugsmoment für die verzahnte Befestigung des Bremshebels 18-22 Nm.

c) **Festes Zentralrad 8,00x 4**

Es gilt das unter b) geschriebene mit dem Unterschied, daß das Rad nicht über Gummihohlfedern gefedert ist. Reifendruck 1,8 bar

d) **Bei der Ausführung mit Bugrad**

Bugrad 5,00 x 4 bzw. 330 x 130, Reifendruck 1,5 bar. Das Bugrad ist mit einer wartungsfreien Gummihohl feder gefedert. Die senkrechte Bugradachse und der Bugradantrieb sind mindestens alle 50 Stunden zu schmieren (siehe Wartungsliste).

Das Hauptfahrwerk des Bugradfalken entspricht dem des Zweibeinfalken, siehe dazu Punkt 3.4 (a) dieses Wartungshandbuches.

3.4.1 Einteilige Klapphaube

Der Verschlussmechanismus der einteiligen Cockpithaube ist in der Zeichnung im Anhang 1 und 2 den auf Seiten 28 und 29 dargestellt.

Wichtigstes Element ist dabei die korrekte Verknieung in Flugrichtung links zwischen den Teilen 4,6,7,9-1 bzw. gleichlaufend rechts zwischen den Teilen 5,6,7,9-r. Am Handgriff innen wird über die Verknieung eine Öffnungs- bzw. Verschlusskraft von 8 bis 10 daN eingestellt.

Ausgabe März 1997 Änd. 5, 20.05.2004
3.5 Propellerwechsel
siehe auch Propellerhandbuch

3.6 Jahresnachprüfung

Ausgabe März 1997
3.7 *Nicht termingebundene Kontrollen, Reparaturen*

4. **Ausrüstung**

5. Schaltplan
Schaltplaneinzelteile

1) Batterie: Varta (oder anderer Hersteller) 51814
2) Hauptschalter: Bosch 0 341 001 001 oder Merit 29 00 00 oder
 Ferntrennschalter Cessna S1579 A2 mit Kippschalter APR
 Schalttronic 6-631 N
 oder 2 Ferntrennschalter Cessna S 1579A2 mit Split-Master-Switch
 Cessna S 1994-1-1
3) Sicherungsautomat (Batterie): ETA 2-5700-K12 25A
4) Startertaste: Bosch 0 343 004 003
4a) Druckschalter: Bosch 0 343 101 003 (nur bei einteiliger Haube)
5) Starterrelais: Denso 182800-1950 12V
6) Amperemeter: Motometer 615.052.1011 oder wahlweise Voltmeter:
 Motometer 685.002.1002
7) Sicherungsautomat (Generator): ETA 2-5700-K12 20 A
 oder 2-5700-IG 2 K 10- DD-20A
8) Regler/Gleichrichter: Ducati E34 32 92 (12VCC 28A)
9) Zündschalter: APR Schalttronic 6-631N oder
 Bendix P/N 10-357290-1 oder ACS-Prod. A-510-5
10) Zündanlage: Rotax/Ducati MHKZ kontaktlos (Doppelzündung)
11) Starter: Nippondenso 820 -12V/0,6 KW
12) Generator: Rotax/Ducati 10P/250W (Permanentmagnet-
 Einphasengenerator)
13) Zündkerzen: ROTAX 912 A: EYQUEM AD 800L oder DC PR 7E
 ROTAX 912 S DCPR8E
14) Sicherungskasten: Hella 8JD 002 290-051 oder Merit 145370 mit
 Sicherungen 5A und größer: Bosch DIN 72581...A,
 Sicherungen kleiner als 5A: 6 x 25 mm Stand.1 (G144.300) ...A, oder
 Einzelsicherungen:
 Sicherungshalter: Wickmann 19595/583 (G 146.600) mit Sicherung:
 5 x 20 mm IEC 127 ...A (z.B. Wickmann 19193 (G143.980) oder
 Sicherungsfanomaten: ETA 2-5700-IG2-K10; 1 A bis 10 A
 oder 2-5700-IG2-K10- DD
15) Benzinstandsanzeige: Motometer 609.003.1012
16) Benzinstandgeber: Motometer 608.001.1055
17) Öltemperaturanzeige: VDO 310.274.082.001
18) Öltemperaturgeber: VDO 323.801.010.001
19) Öldruckanzeige: VDO 350.271.031.007
20) Öldruckgeber: VDO 360.081.029.012
21) Zylindertemperaturanzeige: VDO 310.274.101.001
 Zylindertemperaturanzeige: VDO 310.274.082.001
22) Zylindertemperaturgeber: VDO 323.801.003.001
 Zylindertemperaturgeber: VDO 323.801.010.001
23) Unterspannungsanzeige HELLA 2AA 003257-041
 Kabel nach LN 9251 (entsprechend MIL - W - 5086/2):
 FYGP AN 6 14 mm²
 FYGP AN 10 5 mm²
 FYGP AN 16 1,2 mm²
24) Trimmservo RAY ALLEN: T3 – 12 A (wahlweise)
 Wippschalter RAY ALLEN: RS 2
 Trimmklappenstellungsanzeige: RP 2

Ausgabe März 1997
Änd. 6, 13.10.2005
6. Einstelldaten, Ruderausschläge, Seilspannungen
Flügel-Rumpf-Höhenleitwerks-Einstellung:
Horizontale Bezugsgerade

Flügelschnitt 2,2 m neben Symmetrie-Ebene (Rippe 6)

Höhenflosse in Leitwerksmitte

V-Form:

Holmoberkante

500+20

Wurzelrippe (Rippe 0)

Pfeil-Form:

Rippe 25a

300+20

Wurzelrippe (Rippe 0)

Ruderausschläge:

*) gilt für abgeschrägtes Seitenruder für Motorseglerschlepp

Seitenruder

R740* 400+20 380+19*

R760

Höhenruder

R320 110+10 160+10

R100 20+5 30+5

Trimmruder

R265 125+10 40+5

Queerruder

Ausgabe März 1997 Änd. 1, 22.01.1998
Die Anschläge für die Höhen- und Quersteuerung sind unter den beiden Pilotensitzen angebracht. Sie sind mittels Schraube mit Kontermutter einstellbar ausgeführt.
Zum Einstellen der Trimmruderausschläge wird der Lötnippel ganz am hinteren Ende des Trimmruderseiles versetzt.
Die Ausschläge der Trimmung bei elektrischem Antrieb werden durch die Gewindestangenverbindung zwischen Servomotor und Antriebshebel am Trimmruder eingestellt (verkürzen oder verlängern) Danach sind die Clevis-Fork- Gabelköpfe wieder zu kontern.
Die Seitensteueranschlüge befinden sich am Rumpfheck in der Nähe des Seitenruuderantriebshebels. Sie sind, da sie sich erfahrungsgemäß nur unwesentlich ändern, nicht einstellbar ausgeführt.
Die Gleichmäßigkeit der Störklappen kann mittels zweier Spannschlosser (unter dem linken Pilotensitz) an den Störklappenbetätigungsseilen eingestellt werden (sichern mit Bindedraht nicht vergessen).

6.1 Seilspannungen:
Bei durchgeführter Änderung 158 (Bugradsteuerung mit Verstellpedalen) wurde die Bugradsteuerung mit Seilzügen im geschlossenen Kreislauf verlegt. Dieser geschlossene Seilkreislauf erfordert eine vorgegebene Seilspannung:

25 lbs ± 5 lbs

Bei Bugradsteuerung mit Verstellpedalen wird das Seitenruder und die Bugradsteuerung über einen Mischhebel bedient, auf den die vier Pedale einzeln hingeführt werden (offene Seilkreise).

Zwischen Mischhebel und Seitenruder entsteht deshalb wieder ein geschlossener Seilkreis. Dieser geschlossene Seilkreislauf erfordert eine vorgegebene Seilspannung von:

20 lbs ± 5 lbs

Dieser Wert gilt auch für Bugradsteuerung in Verbindung mit Festpedalen (ebenfalls geschlossener Seilkreislauf)

6.2 Betriebshandbücher

Ausgabe März 1997 Änd. 5, 20.05.2004
7. Angaben zur Schwerpunktsbestimmung für Zentralrad- und Zweibeinfahrwerk

Für die Wägung zur SP-Bestimmung ist der Motorsegler so aufzustellen, daß die Flügelsehne bei Rippe 6 (2,2 m neben der Sym. Ebene) horizontal ist. In dieser Lage wird von der Vorderkante des Tragflügels bei Rippe 0 (0,52 m neben Sym.-Ebene) auf den Boden gelotet. 2,00 m (Maß „a“) vor diesem Punkt liegt die Bezugssebene (BE). Von der BE aus werden die Abstände x_1 und x_2 der Radachsen gemessen. Die Räder stehen auf Waagen, mit denen die Massen G_1 und G_2 ermittelt werden. Aus der Formel: $x_L = \frac{G_1 \cdot x_1 + G_2 \cdot x_2 - G_{Kr} \cdot x_{Kr}}{G_1 + G_2 - G_{Kr}}$ ergibt sich die Lage des Leermassen-SP hinter der BE. Massen in kg, Abstände in cm einsetzen!

x_p = Hebelarm des Piloten = 188 cm
x_{Gap} = Hebelarm Gepäck = 245 cm
x_{Kr} = Hebelarm Kraftstoff \(\Rightarrow 291\) cm (bei 80 l-Tank) \(\Rightarrow 285\) cm (bei 55 l- und 44 l Tank).

G_{Kr} = Masse des Kraftstoffes = Kraftstoffinhalt in Ltr. mal 0,73 kg/Ltr

<table>
<thead>
<tr>
<th>Leermasse G_{leerm} in kg</th>
<th>max. Flugmasse 530 kg</th>
<th>380</th>
<th>390</th>
<th>400</th>
<th>410</th>
<th>420</th>
<th>430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunktlage X in cm 44 l Tank</td>
<td>226,8 - 235,9</td>
<td>226,4 - 235,6</td>
<td>226,1 - 235,7</td>
<td>225,2 - 235,7</td>
<td>224,3 - 235,6</td>
<td>223,4 - 235,5</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktlage X in cm 55 l Tank</td>
<td>226,8 - 234,8</td>
<td>226,4 - 234,7</td>
<td>226,1 - 234,7</td>
<td>225,2 - 234,7</td>
<td>224,3 - 234,6</td>
<td>223,4 - 234,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leermasse G_{leerm} in kg</th>
<th>max. Flugmasse 610 kg</th>
<th>440</th>
<th>450</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunktlage X in cm 44 l Tank</td>
<td>225,8 - 235,7</td>
<td>225,6 - 235,6</td>
<td>225,3 - 235,6</td>
<td>224,5 - 235,5</td>
</tr>
<tr>
<td>Schwerpunktlage X in cm 55 l Tank</td>
<td>225,8 - 234,6</td>
<td>225,6 - 234,6</td>
<td>225,3 - 234,6</td>
<td>224,5 - 234,5</td>
</tr>
<tr>
<td>Schwerpunktlage X in cm 80 l Tank</td>
<td>225,8 - 231,6</td>
<td>225,6 - 231,6</td>
<td>225,3 - 231,7</td>
<td>224,5 - 231,7</td>
</tr>
</tbody>
</table>

Die in den Tabellen angegebenen Werte für X_L gelten für den Motorsegler mit leerem Tank (80l oder 55l oder 44l Fassungs-vermögen), wie sie sich aus obiger Formel für X_L errechnen. Leermasse und SP-Lage sind ohne Stützräder (falls vorhanden) zu ermitteln.

Ausgabe März 1997 Änd. 7, 20.01.2009
7. Angaben zur Schwerpunktsbestimmung für Zentralrad- und Zweibeinfahrwerk

Für die Wägung zur SP- Bestimmung ist der Motorsegler so aufzustellen, daß die Flügelsehne bei Rippe 6 (2,2 m neben der Sym. Ebene) horizontal ist. In dieser Lage wird von der Vorderkante des Tragflügels bei Rippe 0 (0,52 m neben Sym.-Ebene) auf den Boden gelotet. 2,00 m (Maß „a“) vor diesem Punkt liegt die Bezugs Ebene (BE). Von der BE aus werden die Abstände \(x_1 \) und \(x_2 \) der Radachse gemessen. Die Räder stehen auf Waagen, mit denen die Massen \(G_1 \) und \(G_2 \) ermittelt werden. Aus der Formel:

\[x_L = \frac{G_1 \cdot x_1 + G_2 \cdot x_2 - G_{Kr} \cdot x_{Kr}}{G_1 + G_2 - G_{Kr}} \]

ergibt sich die Lage des Leermassen- SP hinter der BE, Massen in kg, Abstände in cm einsetzen!

\(x_p = \) Hebelarm des Piloten = 188 cm \(x_{Gep} = \) Hebelarm Gepäck = 245 cm \(x_{Kr} = \) Hebelarm Kraftstoff \(\Rightarrow \) 291 cm (bei 80 l-Tank) \(\Rightarrow \) 285 cm (bei 55 l- und 44 l-Tank)

\(G_{Kr} = \) Masse des Kraftstoffes = Kraftstoffinhalt in Ltr. mal 0,73 kg/Ltr

<table>
<thead>
<tr>
<th>Leermasse G</th>
<th>T kg</th>
<th>ex Flugmasse 650 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugmasse</td>
<td>225,3 - 225,1</td>
<td>224,8 - 224,6</td>
</tr>
<tr>
<td>450</td>
<td>234,6</td>
<td>234,5</td>
</tr>
<tr>
<td>460</td>
<td>225,3</td>
<td>225,1</td>
</tr>
<tr>
<td>470</td>
<td>234,5</td>
<td>234,4</td>
</tr>
<tr>
<td>480</td>
<td>231,7</td>
<td>231,7</td>
</tr>
<tr>
<td>490</td>
<td>231,7</td>
<td>231,7</td>
</tr>
<tr>
<td>500</td>
<td>231,7</td>
<td>231,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schw.punktlage X cm in 55 l-Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugmasse 650 kg</td>
</tr>
<tr>
<td>224,8 - 224,7</td>
</tr>
<tr>
<td>234,0</td>
</tr>
<tr>
<td>231,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schw.punktlage X cm in 80 l-Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugmasse 690 kg</td>
</tr>
<tr>
<td>224,8 - 224,7</td>
</tr>
<tr>
<td>234,0</td>
</tr>
<tr>
<td>231,7</td>
</tr>
</tbody>
</table>

Die in den Tabellen angegebenen Werte für \(X_L \) gelten für den Motorsegler mit leerem Tank (80l oder 55l Fassungs-vermögen), wie sie sich aus obiger Formel für \(X_L \) errechnen. Leermasse und SP.-Lage sind ohne Stützräder (falls vorhanden) zu ermitteln.

Ausgabe März 1997 Änd. 7, 20.01.2009
8. Angaben zur Schwerpunktsbestimmung für Bugradfahrwerk

Für die Wägung zur SP-Bestimmung ist der Motorsegler so aufzustellen, daß die Flügelsehne bei Rippe 6 (2,2 m neben der Sym. Ebene) horizontal ist. In dieser Lage wird von der Vorderkante des Tragflügels bei Rippe 0 (0,52 m neben Sym. Ebene) auf den Boden gelotet. 2,00 m (Maß "a") vor diesem Punkt liegt die BezugsEbene (BE). Von der BE aus werden die Abstände \(x_1 \) und \(x_2 \) der Radachsen gemessen. Die Räder stehen auf Waagen, mit denen die Massen \(G_1 \) und \(G_2 \) ermittelt werden. Aus der Formel:

\[
x_L = \frac{G_1 \cdot x_1 + G_2 \cdot x_2 - G_{Kr} \cdot x_{Kr}}{G_1 + G_2 - G_{Kr}}
\]

ergibt sich die Lage des Leermassen-SP hinter der BE.

Massen in (kg), Abstände in (cm) einsetzen!

\(x_p \) = Hebelarm des Piloten = 188 cm
\(x_{Kr} \) = Hebelarm des Kraftstoffes = 285 cm (bei 55 l-Tank)

\(G_{Kr} \) = Masse des Kraftstoffes = 291 cm (bei 80 l-Tank)

\(G_{GeP} \) = Hebelarm des Gepäcks = Kraftstoffinhalt in Ltr. mal 0,73 kg/Ltr.

= 245 cm

Ist der Tank leer, so entfallen die Glieder \(G_{Kr} \) und \(G_{Kr} \cdot x_{Kr} \).

<table>
<thead>
<tr>
<th>Leermasse (G) in kg</th>
<th>max. Flugmasse 650 kg</th>
<th>(x_p) = 188 cm</th>
<th>(x_{Kr}) = 285 cm (bei 55 l-Tank)</th>
<th>(x_{Kr}) = 291 cm (bei 80 l-Tank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leermasse (G) in kg</td>
<td>450</td>
<td>460</td>
<td>470</td>
<td>480</td>
</tr>
<tr>
<td>Leermasse (G) in kg</td>
<td>455</td>
<td>460</td>
<td>465</td>
<td>470</td>
</tr>
</tbody>
</table>

Die in der Tabelle angegebenen Werte für \(x_L \) gelten für den Motorsegler mit leerem Tank (80l oder 55l Fassungsvermögen), wie sie sich aus obiger Formel für \(x_L \) errechnen.

Ausgabe März 1997
Änd. 7, 20.01.2009
9. Übersicht der erfolgten Wägungen

<table>
<thead>
<tr>
<th>Datum</th>
<th>Leermasse</th>
<th>max. Zuladung</th>
<th>Leermassen-Schwerpunkt</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.03.2007</td>
<td>463 kg</td>
<td>187 kg</td>
<td>225,2 cm</td>
<td></td>
</tr>
</tbody>
</table>

Ausgabe März 1997
10. Übersicht der erfolgten Wägungen

<table>
<thead>
<tr>
<th>Datum</th>
<th>Leermasse</th>
<th>max. Zuladung</th>
<th>Leermassen-Schwerpunkt</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ohne Schleppgestell, mit kg Trimmgewicht im Rumpfheck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mit Schleppgestell, ohne Trimmgewicht</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hinweise für das Herstellen bzw. Lösen der Flügelhauptverbindung

Beim Zusammenführen und besonders auch beim Abmontieren der Flügelanschlüsse ist besondere Sorgfalt walten zu lassen, damit die Hauptbeschlagslaschen des linken Tragflügels (Gabellaschen) nicht nach unten oder oben aufgebogen werden. Den Hauptbolzen nicht mit Gewalt einführen (z.B. Eintreiben mittels Hammer o.ä.), sondern gefühlvoll von Hand bei entlasteten Tragflügeln!

Sicherungsnadel (Drahtdurchmesser 2,5 mm) am Anschlag

Der zylindrische Teil des Hauptbolzens muß mindestens mit dem unteren Rand bündig sein oder herausragen.
Muster/Baureihe: SF25C Faune
Werknummer: 44525
Auftraggeber/Halter: Michael Bergmann Kempen
Operator:
Bezugspunkt (BP): Flugzeugvorderkante wunzelteile 50 m vor BP.
Horizontale Bezugslinie (BL): Rügelsee übte 6 nach unten.

Einzelgewichte:
- Tragflügel rechts: 81,2 kg
- Tragflügel links: 80,4 kg
- Rumpf: 285,5 kg
- Höhenleitwerk: 14,2 kg
- Seitenruder:
- Tragwerkstreben: 50% N.T.
- Zuladung: 187 kg

Ergebnis total: 463,3 kg

Gewichtsgrenzen:
- Leergewicht: 463 kg
- Zuladung: 187 kg
- Höchstgewicht ohne Wasserballast: 650 kg
- Höchstgewicht mit Wasserballast: — kg
- Höchstgewicht der nichttragenden Teile einschließlich Zuladung laut Kennblatt: 490 kg

Bemerkungen:
Wägung auf dem Hauptaufwerk
Gewichtsflugzeug: Motorflug

Auflage / Brutto kg / Tara kg / Netto kg / Hebelarm (mm)
- vorn G1: 30,1 kg / — / 30,1 kg / a = 107
- hinten G2: 30,1 kg / — / 30,1 kg / b = 5527

Ergebnis total (G ges): 463,3 kg

Leergewichtsschwerpunkt (mm):
- Sp. Lage bei 2252,0 mm
- 224,6 cm / 231,7 cm

Leergewichtsschwerpunktbereich laut Flughandbuch von ____ mm, bis ____ mm, bei 440 kg Leergewicht.

Die errechnete Schwerpunktstelle liegt im zulässigen Bereich Ja, nein.
Der Trimmplan im Segelflugzeug und im Flughandbuch wurden überprüft.

Ausrüstung bei der Wägung:
Siehe Ausrüstungsverzeichnis vom:

Luvo 12/2003 Version 03

E08-2000